论文标题
现实世界游戏看起来像是旋转上衣
Real World Games Look Like Spinning Tops
论文作者
论文摘要
本文研究了现实世界奥运会的几何特性(例如Tic-Tac-Toe,GO,Starcraft II)。我们假设它们的几何结构类似于旋转顶部,直立轴代表及物强度,而径向轴对应于特定的传递强度下存在的循环数,代表了非传递尺寸。我们证明了这种几何形状的存在,用于广泛的现实世界游戏,揭露了它们的时间本质。此外,我们表明这种独特的结构也对学习产生了后果 - 它阐明了为什么策略人群对于训练代理人是必需的,以及人口规模与游戏结构的关系。最后,我们通过使用九个现实世界的两人零和对称游戏的选择来验证这些主张,显示1)揭示了旋转的顶部结构,并且可以通过使用NASH聚类的新方法来轻松地重建旋转的结构,以衡量及时性策略和周期性策略行为之间的相互作用,以及对这些游戏的效果对这些游戏的影响。
This paper investigates the geometrical properties of real world games (e.g. Tic-Tac-Toe, Go, StarCraft II). We hypothesise that their geometrical structure resemble a spinning top, with the upright axis representing transitive strength, and the radial axis, which corresponds to the number of cycles that exist at a particular transitive strength, representing the non-transitive dimension. We prove the existence of this geometry for a wide class of real world games, exposing their temporal nature. Additionally, we show that this unique structure also has consequences for learning - it clarifies why populations of strategies are necessary for training of agents, and how population size relates to the structure of the game. Finally, we empirically validate these claims by using a selection of nine real world two-player zero-sum symmetric games, showing 1) the spinning top structure is revealed and can be easily re-constructed by using a new method of Nash clustering to measure the interaction between transitive and cyclical strategy behaviour, and 2) the effect that population size has on the convergence in these games.