论文标题
多代理对具有不确定状态的目标的持续监控
Multi-Agent Persistent Monitoring of Targets with Uncertain States
论文作者
论文摘要
我们解决了持续监控的问题,其中有限的移动代理必须持续访问有限的目标。这些目标中的每一个都有一个内部状态,该状态以线性随机动力学发展。代理可以观察这些状态,观察质量是代理和给定目标之间距离的函数。然后,目标是最大程度地减少这些目标状态的平均估计误差。我们从无限的地平线角度来解决问题,在某些自然假设下,每个目标的协方差矩阵会收敛到极限周期。因此,目标成为最大程度地减少稳态不确定性。假设轨迹已被参数化,我们提供了计算稳态成本梯度的工具。我们表明,在具有有界控制和非重叠目标的一维(1D)环境中,当存在最佳控件时,可以使用有限数量的参数来表示。我们还提出了使用傅立叶曲线对代理轨迹进行多维设置的有效参数化。仿真结果表明,该技术在1D,2D和3D方案中的功效。
We address the problem of persistent monitoring, where a finite set of mobile agents has to persistently visit a finite set of targets. Each of these targets has an internal state that evolves with linear stochastic dynamics. The agents can observe these states, and the observation quality is a function of the distance between the agent and a given target. The goal is then to minimize the mean squared estimation error of these target states. We approach the problem from an infinite horizon perspective, where we prove that, under some natural assumptions, the covariance matrix of each target converges to a limit cycle. The goal, therefore, becomes to minimize the steady state uncertainty. Assuming that the trajectory is parameterized, we provide tools for computing the steady state cost gradient. We show that, in one-dimensional (1D) environments with bounded control and non-overlapping targets, when an optimal control exists it can be represented using a finite number of parameters. We also propose an efficient parameterization of the agent trajectories for multidimensional settings using Fourier curves. Simulation results show the efficacy of the proposed technique in 1D, 2D and 3D scenarios.