论文标题

在整个幻灯片图像上有效的数据有效且弱监督的计算病理学

Data Efficient and Weakly Supervised Computational Pathology on Whole Slide Images

论文作者

Lu, Ming Y., Williamson, Drew F. K., Chen, Tiffany Y., Chen, Richard J., Barbieri, Matteo, Mahmood, Faisal

论文摘要

计算病理学的快速新兴领域具有实现客观诊断,治疗反应预测和鉴定临床相关性的新形态特征的潜力。但是,基于深度学习的计算病理学方法要么需要在完全监督的设置中手动注释全部幻灯片图像(WSIS),要么需要在弱监督的设置中具有幻灯片级标签的数千种WSI。此外,整个幻灯片水平计算病理学方法也遭受了域的适应性和可解释性问题。这些挑战阻止了用于临床和研究目的的计算病理学的广泛适应。在这里,我们提出蛤 - 聚类受到的注意力多个实例学习,易于使用,高通量和可解释的WSI级处理和学习方法,该方法仅需要幻灯片级标签,同时具有数据效率,适应性和能够处理多类亚型问题。 CLAM是一种基于深度学习的弱监督方法,它使用基于注意力的学习来自动识别高诊断值的子区域,以便准确地对整个幻灯片进行分类,同时还利用实例级别的聚类,而不是确定的代表性区域,以限制和改进特征空间。在三个单独的分析中,我们证明了蛤的数据效率和适应性及其优于标准弱监督分类的卓越性能。我们证明蛤模型是可解释的,可用于识别知名和新的形态特征。我们进一步表明,使用CLAM训练的模型可以适应独立的测试队列,手机显微镜图像和活检。蛤是一种通用和适应性的方法,可用于临床和研究环境中的各种不同计算病理学任务。

The rapidly emerging field of computational pathology has the potential to enable objective diagnosis, therapeutic response prediction and identification of new morphological features of clinical relevance. However, deep learning-based computational pathology approaches either require manual annotation of gigapixel whole slide images (WSIs) in fully-supervised settings or thousands of WSIs with slide-level labels in a weakly-supervised setting. Moreover, whole slide level computational pathology methods also suffer from domain adaptation and interpretability issues. These challenges have prevented the broad adaptation of computational pathology for clinical and research purposes. Here we present CLAM - Clustering-constrained attention multiple instance learning, an easy-to-use, high-throughput, and interpretable WSI-level processing and learning method that only requires slide-level labels while being data efficient, adaptable and capable of handling multi-class subtyping problems. CLAM is a deep-learning-based weakly-supervised method that uses attention-based learning to automatically identify sub-regions of high diagnostic value in order to accurately classify the whole slide, while also utilizing instance-level clustering over the representative regions identified to constrain and refine the feature space. In three separate analyses, we demonstrate the data efficiency and adaptability of CLAM and its superior performance over standard weakly-supervised classification. We demonstrate that CLAM models are interpretable and can be used to identify well-known and new morphological features. We further show that models trained using CLAM are adaptable to independent test cohorts, cell phone microscopy images, and biopsies. CLAM is a general-purpose and adaptable method that can be used for a variety of different computational pathology tasks in both clinical and research settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源