论文标题

通过LP层次结构和集群进行通信延迟安排

Scheduling with Communication Delays via LP Hierarchies and Clustering

论文作者

Davies, Sami, Kulkarni, Janardhan, Rothvoss, Thomas, Tarnawski, Jakub, Zhang, Yihao

论文摘要

我们考虑在沟通延迟的情况下,在相同的机器上安排工作的经典问题,并在相同的机器上具有优先限制,以最大程度地减少Makepan。在此设置中,由$ \ Mathsf {p} \ Mid \ Mathsf {PROC},C \ MID C _ {\ Mathsf {Max}} $表示,如果将两个依赖的作业安排在不同的机器上,则至少在$ c $的时间之间进行$ C $单位必须通过执行权之间。尽管它与许多应用相关,但该模型仍然是调度理论中最糟糕的理解之一。即使在有无限数量的机器可用的特殊情况下,最著名的近似比率为$ 2/3 \ cdot(C+1)$,而Graham的贪婪列表安排算法已经给出了$(C+1)$ - 在这种情况下 - 近似值。 Schuurman和Woeginger的前十名列表中的一个杰出的开放问题及其最近的Bansal更新询问是否存在恒定因子近似算法。 在这项工作中,我们给出了一个多项式时间$ o(\ log c \ cdot \ log m)$ - 此问题的近似算法,其中$ m $是机器的数量,$ c $是通信延迟。我们的方法是基于Sherali-Adams的线性编程松弛的提升和该升力引起的半学空间的随机聚类。

We consider the classic problem of scheduling jobs with precedence constraints on identical machines to minimize makespan, in the presence of communication delays. In this setting, denoted by $\mathsf{P} \mid \mathsf{prec}, c \mid C_{\mathsf{max}}$, if two dependent jobs are scheduled on different machines, then at least $c$ units of time must pass between their executions. Despite its relevance to many applications, this model remains one of the most poorly understood in scheduling theory. Even for a special case where an unlimited number of machines is available, the best known approximation ratio is $2/3 \cdot (c+1)$, whereas Graham's greedy list scheduling algorithm already gives a $(c+1)$-approximation in that setting. An outstanding open problem in the top-10 list by Schuurman and Woeginger and its recent update by Bansal asks whether there exists a constant-factor approximation algorithm. In this work we give a polynomial-time $O(\log c \cdot \log m)$-approximation algorithm for this problem, where $m$ is the number of machines and $c$ is the communication delay. Our approach is based on a Sherali-Adams lift of a linear programming relaxation and a randomized clustering of the semimetric space induced by this lift.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源