论文标题

用于态度估计和2控制3 DOF系统的自适应神经模糊模型

An adaptive neuro-fuzzy model for attitude estimation and 2 control a 3 DOF system

论文作者

Wang, Xin, Abtahi, SeyedMehdi, Chahari, Mahmood, Zhao, Tianyu

论文摘要

最近几十年,科学家的主要关注点是提高卫星态度的准确性,而不管费用如何。显而易见的结果是,已经使用了大量的控制策略来解决此问题。在这项研究中,开发了自适应神经模糊(ANFIS)卫星态度估计和控制系统。控制器接受了由最佳控制器提供的数据训练。脉冲调制器用于生成推进器执行器的右开/关命令。为了评估AN-FIS控制器在闭环模拟中的性能,使用磁力计,太阳传感器和数据陀螺仪数据,使用ANFIS观察者来估计卫星的态度和角速度。此外,将提出和评估一个新的ANFIS系统,可以共同控制和估计该系统。将ANFIS控制器的性能与具有不同初始条件,干扰和噪声的蒙特卡洛模拟中的最佳PID控制器进行了比较。结果表明,ANFIS控制器可以在几个方面(包括时间和平滑度)超过最佳PID控制器。此外,检查了ANFIS估计器,结果证明了该指定观察者的高能力。考虑到ANFI的高容量,对控制阶段和估计阶段都通过单个ANFIS子系统进行了模拟,并证明了使用ANFIS模型的结果。

In recent decades, one of the scientists' main concerns has been to improve the accuracy of satellite attitude, regardless of the expense. The obvious result is that a large number of control strategies have been used to address this problem. In this study, an adaptive neuro-fuzzy integrated (ANFIS) satellite attitude estimation and control system was developed. The controller is trained with the data provided by an optimal controller. A pulse modulator is used to generate the right ON/OFF commands of the thruster actuator. To evaluate the performance of the AN-FIS controller in closed-loop simulation, an ANFIS observer is used to estimate the attitude and angular velocities of the satellite using magnetometer, sun sensor and data gyro data. In addition, a new ANFIS system will be proposed and evaluated that can jointly control and estimate the system. The performance of the ANFIS controller is compared to the optimal PID controller in a Monte Carlo simulation with different initial conditions, disturbance and noise. The results show that the ANFIS controller can surpass the optimal PID controller in several aspects, including time and smoothness. In addition, the ANFIS estimator is examined and the results demonstrate the high ability of this designated observers. Both the control and estimation phases are simulated by a single ANFIS subsystem, taking into account the high capacity of ANFIS, and the results of using the ANFIS model are demonstrated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源