论文标题

第四阶半线性椭圆方程的Hessian离散方法:vonKármán和Navier的应用 - Stokes Models

Hessian discretisation method for fourth order semi-linear elliptic equations: applications to the von Kármán and Navier--Stokes models

论文作者

Droniou, Jérome, Nataraj, Neela, Shylaja, Devika

论文摘要

本文介绍了针对三连线非线性的第四阶半线性椭圆方程的Hessian离散方法(HDM)。 HDM为几种数值方法的收敛分析提供了一个通用框架,例如,基于梯度恢复(GR)运算符的符合和不合格的有限元方法(NCFEM)和方法。 ADINI NCFEM和GR方法是一种基于分段线性函数的廉价局部重建的特定方案,首次分析了第四阶半线性椭圆方程,具有三线性非线性。四个属性,即,在HDM框架中不需要任何规律性的HDM框架中的固定性,一致性,极限符合性和紧凑性使得能够收敛分析。在应用中,讨论了应用程序中的两个重要问题,即,讨论了流函数涡度配方中的Navier-Stokes方程和板弯曲的VonKármán方程。为Morley NCFEM和GR方法提供了数值实验的结果。

This paper deals with the Hessian discretisation method (HDM) for fourth order semi-linear elliptic equations with a trilinear nonlinearity. The HDM provides a generic framework for the convergence analysis of several numerical methods, such as, the conforming and non-conforming finite element methods (ncFEMs) and methods based on gradient recovery (GR) operators. The Adini ncFEM and GR method, a specific scheme that is based on cheap, local reconstructions of higher-order derivatives from piecewise linear functions, are analysed for the first time for fourth order semi-linear elliptic equations with trilinear nonlinearity. Four properties namely, the coercivity, consistency, limit-conformity and compactness enable the convergence analysis in HDM framework that does not require any regularity of the exact solution. Two important problems in applications namely, the Navier--Stokes equations in stream function vorticity formulation and the von Kármán equations of plate bending are discussed. Results of numerical experiments are presented for the Morley ncFEM and GR method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源