论文标题

学习鲁棒3D形状表示的本地相邻结构

Learning Local Neighboring Structure for Robust 3D Shape Representation

论文作者

Gao, Zhongpai, Yan, Junchi, Zhai, Guangtao, Zhang, Juyong, Yang, Yiyan, Yang, Xiaokang

论文摘要

网格是3D形状的强大数据结构。在许多计算机视觉和图形应用中,3D网格的表示学习很重要。卷积神经网络(CNN)对于结构化数据(例如,图像)的最新成功表明,从CNN中适应3D形状的洞察力的价值。但是,由于每个节点的邻居都是无序的,因此3D形状数据是不规则的。已经使用各向同性过滤器或预定义的局部坐标系统开发了用于3D形状的各种图形神经网络,以克服图上的节点不一致。但是,各向同性过滤器或预定义的局部坐标系限制了表示功率。在本文中,我们提出了一个局部结构感知的各向异性卷积操作(LSA-CONV),该操作根据局部相邻结构学习每个节点的自适应加权矩阵,并执行共享的各向异性过滤器。实际上,可学习的加权矩阵与随机合成器中的注意力矩阵相似,这是一种新的自然语言处理变压器模型(NLP)。全面的实验表明,与最先进的方法相比,我们的模型在3D形状重建方面产生显着改善。

Mesh is a powerful data structure for 3D shapes. Representation learning for 3D meshes is important in many computer vision and graphics applications. The recent success of convolutional neural networks (CNNs) for structured data (e.g., images) suggests the value of adapting insight from CNN for 3D shapes. However, 3D shape data are irregular since each node's neighbors are unordered. Various graph neural networks for 3D shapes have been developed with isotropic filters or predefined local coordinate systems to overcome the node inconsistency on graphs. However, isotropic filters or predefined local coordinate systems limit the representation power. In this paper, we propose a local structure-aware anisotropic convolutional operation (LSA-Conv) that learns adaptive weighting matrices for each node according to the local neighboring structure and performs shared anisotropic filters. In fact, the learnable weighting matrix is similar to the attention matrix in the random synthesizer -- a new Transformer model for natural language processing (NLP). Comprehensive experiments demonstrate that our model produces significant improvement in 3D shape reconstruction compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源