论文标题
因果推理的类别理论论点
A category theoretical argument for causal inference
论文作者
论文摘要
本文的目的是设计因果因素之间的复杂相互作用的因果推理方法。所提出的方法依赖于对因变量,自变量和潜在变量的定义的类别理论重新重新制定,该定义在未标记分区的类别中的产品和箭头方面。在整个论文中,我们演示了所提出的方法如何解释可能的隐藏变量,例如环境变量或噪声,以及如何用$ p $ - 价值来统计地解释它。从类别理论到统计数据的这种解释是通过强调ANOVA功能属性的一系列命题来实施的。我们将这些属性与我们的类别理论框架结合使用,以提供有关声音代数和统计特性的因果推理问题的解决方案。作为一种应用,我们展示了如何使用该提出的方法来设计遗传学领域的整个组合基因组关联算法。
The goal of this paper is to design a causal inference method accounting for complex interactions between causal factors. The proposed method relies on a category theoretical reformulation of the definitions of dependent variables, independent variables and latent variables in terms of products and arrows in the category of unlabeled partitions. Throughout the paper, we demonstrate how the proposed method accounts for possible hidden variables, such as environmental variables or noise, and how it can be interpreted statistically in terms of $p$-values. This interpretation, from category theory to statistics, is implemented through a collection of propositions highlighting the functorial properties of ANOVA. We use these properties in combination with our category theoretical framework to provide solutions to causal inference problems with both sound algebraic and statistical properties. As an application, we show how the proposed method can be used to design a combinatorial genome-wide association algorithm for the field of genetics.