论文标题
基准上的新型图形弯曲转换
A Novel Graphic Bending Transformation on Benchmark
论文作者
论文摘要
经典的基准问题利用多种变换技术来增加优化难度,例如,抗中心效应和旋转的抗尺寸灵敏度的转移。尽管测试了转换不变性,但是,此类操作并没有真正改变景观的“形状”,而是改变了“观点”。例如,在旋转后,以方向扭曲了不良的条件问题,但仍保持比例组件,在某种程度上,在某种程度上并没有在优化中造成太大的障碍。在本文中,我们从图像处理的启发下研究了基准问题上新型的图形形式映射转换,以使功能形状变形。弯曲操作不会改变函数基本属性,例如,单峰功能几乎可以在弯曲后保持其非模式,但可以修改搜索空间中感兴趣的区域的形状。实验表明,相同的优化器花费更多的搜索预算,并且与旋转版本相比,在保形弯曲功能上遇到更多的故障。还分析了所提出函数的几个参数,以揭示进化算法的性能敏感性。
Classical benchmark problems utilize multiple transformation techniques to increase optimization difficulty, e.g., shift for anti centering effect and rotation for anti dimension sensitivity. Despite testing the transformation invariance, however, such operations do not really change the landscape's "shape", but rather than change the "view point". For instance, after rotated, ill conditional problems are turned around in terms of orientation but still keep proportional components, which, to some extent, does not create much obstacle in optimization. In this paper, inspired from image processing, we investigate a novel graphic conformal mapping transformation on benchmark problems to deform the function shape. The bending operation does not alter the function basic properties, e.g., a unimodal function can almost maintain its unimodality after bent, but can modify the shape of interested area in the search space. Experiments indicate the same optimizer spends more search budget and encounter more failures on the conformal bent functions than the rotated version. Several parameters of the proposed function are also analyzed to reveal performance sensitivity of the evolutionary algorithms.