论文标题
未列出的最大特征函数的变化
Variation of the uncentered maximal characteristic Function
论文作者
论文摘要
令$ \ Mathcal m $为无hardy-littlewood的最大操作员或二元最大操作员和$ d \ geq1 $。我们证明,对于有限周围的$ e \ subset \ mathbb r^d $ bound $ \ permatatorName {var} \ mathcal m1_e \ leq c_d c_d c_d \ operatateOrname {var} 1_e $ holds。我们还为本地最大运算符证明了这一点。
Let $\mathcal M$ be the uncentered Hardy-Littlewood maximal operator or the dyadic maximal operator and $d\geq1$. We prove that for a set $E\subset\mathbb R^d$ of finite perimeter the bound $\operatorname{var}\mathcal M1_E\leq C_d\operatorname{var}1_E$ holds. We also prove this for the local maximal operator.