论文标题
混合MMWave MIMO系统的宽带同步和压缩通道估计
Broadband Synchronization and Compressive Channel Estimation for Hybrid mmWave MIMO Systems
论文作者
论文摘要
同步是细胞系统中的一个基本程序,在该系统中,UE获取了解码BS传输数据所需的时间和频率信息。由于有必要使用大型天线阵列获得补偿小天线孔所需的光束成型增益,因此必须像5G NR一样与光束训练共同执行同步,或者在低率SNR状态下,如果高维MMMWAVE MIMO通道进行估计。为了解决这个问题,这项工作提出了对MMWave MIMO的第一个同步框架,该框架对TO,CFO和PN同步错误都具有鲁棒性,并且与先前的工作不同,它隐含地考虑了在发射器和接收器上使用多个RF链的使用。我提供了对估计问题的理论分析,并得出了HCRLB的估计,以估算不同接收的RF链所看到的CFO,PN和等效光束的通道。我还提出了两种新型算法来估计不同的未知参数,这些参数依赖于近似PN的MMSE估计器以及CFO和等效光束构造通道的ML估计器。此后,我建议使用等效波束形成的通道的估计值来对高维频率选择的MMWAVE MIMO通道进行压缩估计,从而进行数据传输。为了进行性能评估,我考虑实现5G NR通道模型的Quadriga通道模拟器,并表明两个没有事先同步的压缩通道估计,并且所提出的方法在5G NR中的当前目前所考虑的凝聚力梁训练和同步。
Synchronization is a fundamental procedure in cellular systems whereby an UE acquires the time and frequency information required to decode the data transmitted by a BS. Due to the necessity of using large antenna arrays to obtain the beamforming gain required to compensate for small antenna aperture, synchronization must be performed either jointly with beam training as in 5G NR, or at the low SNR regime if the high-dimensional mmWave MIMO channel is to be estimated. To circumvent this problem, this work proposes the first synchronization framework for mmWave MIMO that is robust to both TO, CFO, and PN synchronization errors and, unlike prior work, implicitly considers the use of multiple RF chains at both transmitter and receiver. I provide a theoretical analysis of the estimation problem and derive the HCRLB for the estimation of both the CFO, PN, and equivalent beamformed channels seen by the different receive RF chains. I also propose two novel algorithms to estimate the different unknown parameters, which rely on approximating the MMSE estimator for the PN and the ML estimators for both the CFO and the equivalent beamformed channels. Thereafter, I propose to use the estimates for the equivalent beamformed channels to perform compressive estimation of the high-dimensional frequency-selective mmWave MIMO channel and thus undergo data transmission. For performance evaluation, I consider the QuaDRiGa channel simulator, which implements the 5G NR channel model, and show that both compressive channel estimation without prior synchronization is possible, and the proposed approaches outperform current solutions for joint beam training and synchronization currently considered in 5G NR.