论文标题

分级几何形状和张量表理论

Graded Geometry and Tensor Gauge Theories

论文作者

Chatzistavrakidis, Athanasios, Karagiannis, Georgios, Schupp, Peter

论文摘要

我们回顾了分级几何形状框架中混合对称性更高自旋场的拉格朗日人的构建。在这种情况下,分级形式主义的主要优点是,它提供了通用表达式,从某种意义上说,即使给定的Lagrangian描述了任何类型的玻色张张量场的动态,即使相应的显式表达方式在局部字段组件及其衍生物方面看起来相当不同。除了自由字段及其动力学术语外,我们还考虑了导致二阶字段方程的较高衍生交互项。对于标量,差分形式和两分张量,它们是用galileon理论识别的,以简单而优雅的形式写为概括的动力学术语,并且通过结构不变。对于高于2的自旋场,我们说明了候选Galileon样相互作用,并认为无法同时维护全量规的不变性和局部性。

We review the construction of Lagrangians for higher spin fields of mixed symmetry in the framework of graded geometry. The main advantage of the graded formalism in this context is that it provides universal expressions, in the sense that a given Lagrangian describes the dynamics of any type of bosonic tensor field even though the corresponding explicit expressions in terms of local field components and their derivatives look rather different. Aside from free fields and their kinetic terms, we also consider higher derivative interaction terms that lead to second order field equations. For scalars, differential forms and bipartite tensors, these are identified with Galileon theories, written in a simple yet elegant form as a generalised kinetic term, and are gauge invariant by construction. For fields of spin higher than 2, we illustrate the candidate Galileon-like interactions and argue that full gauge invariance and locality cannot be simultaneously maintained.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源