论文标题

简单的启发式方法,用于有效平行张量收缩和量子电路模拟

Simple heuristics for efficient parallel tensor contraction and quantum circuit simulation

论文作者

Schutski, Roman, Kolmakov, Dmitry, Khakhulin, Taras, Oseledets, Ivan

论文摘要

张量网络是各种计算科学中的主要构件,范围从多体理论和量子计算到概率和机器学习。在这里,我们提出了一种使用概率图形模型来收缩张量网络的平行算法。我们的方法基于图理论中$ $ $ - 树的删除问题的启发式解决方案。我们将所得算法应用于随机量子电路的模拟,并讨论一般张量网络收缩的扩展。

Tensor networks are the main building blocks in a wide variety of computational sciences, ranging from many-body theory and quantum computing to probability and machine learning. Here we propose a parallel algorithm for the contraction of tensor networks using probabilistic graphical models. Our approach is based on the heuristic solution of the $μ$-treewidth deletion problem in graph theory. We apply the resulting algorithm to the simulation of random quantum circuits and discuss the extensions for general tensor network contractions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源