论文标题

为流量预测构建地理和长期时间图

Constructing Geographic and Long-term Temporal Graph for Traffic Forecasting

论文作者

Sun, Yiwen, Wang, Yulu, Fu, Kun, Wang, Zheng, Zhang, Changshui, Ye, Jieping

论文摘要

交通预测会影响各种智能运输系统(ITS)服务,对用户体验以及城市交通控制具有重要意义。由于道路网络包含复杂且随时间变化的时空依赖性的事实,因此具有挑战性。最近,基于深度学习的方法通过采用图形卷积网络(GCN)来提取空间相关性和复发性神经网络(RNN)来捕获时间依赖性,从而实现了有希望的结果。但是,现有方法通常仅基于道路网络连接构建图,这限制了道路之间的相互作用。在这项工作中,我们提出了地理和长期图形卷积复发性神经网络(GLT-GCRNN),这是一个新型的交通预测框架,可以了解共享相似地理或长期时间模式的道路之间的丰富相互作用。对现实世界流量状态数据集的广泛实验通过表明GLT-GCRNN在不同的指标方面优于最先进的方法,从而验证了我们方法的有效性。

Traffic forecasting influences various intelligent transportation system (ITS) services and is of great significance for user experience as well as urban traffic control. It is challenging due to the fact that the road network contains complex and time-varying spatial-temporal dependencies. Recently, deep learning based methods have achieved promising results by adopting graph convolutional network (GCN) to extract the spatial correlations and recurrent neural network (RNN) to capture the temporal dependencies. However, the existing methods often construct the graph only based on road network connectivity, which limits the interaction between roads. In this work, we propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN), a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns. Extensive experiments on a real-world traffic state dataset validate the effectiveness of our method by showing that GLT-GCRNN outperforms the state-of-the-art methods in terms of different metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源