论文标题
在具有树规则条件的XC中构建复杂性的功能
Constructing Complexity-efficient Features in XCS with Tree-based Rule Conditions
论文作者
论文摘要
机器学习的主要目标是创建抽象无关信息的技术。标准学习分类器系统(LCS)的概括属性在功能级别上删除了此类信息,但在功能相互作用级别上没有删除。代码片段(CFS)是一种基于树的程序的一种形式,引入了特征操纵以发现重要的相互作用,但它们通常包含无关的信息,这会导致结构性效率低下。 XOF是最近引入的LCS,它使用CFS来编码有关特征交互的知识的构建块。本文旨在优化XOF中CFS的结构效率。我们提出了两项改进构造CFS以实现这一目标的措施。首先,新的CF拟合更新估计了CFS的适用性,该CF也考虑了结构上的复杂性。我们可以使用的第二个措施是基于利基的生成CFS的方法。对这些方法进行了偶数和分层问题的测试,这些问题需要非常复杂的输入特征组合才能捕获数据模式。结果表明,所提出的方法显着提高了CF的结构效率,这是由规则“一般性率”估算的。这导致了分层多数股权问题的学习速度更快。此外,不需要CF生成的用户集深度限制,因为一旦构建了最佳的CF,学习代理就不会采用更高级别的CF。
A major goal of machine learning is to create techniques that abstract away irrelevant information. The generalisation property of standard Learning Classifier System (LCS) removes such information at the feature level but not at the feature interaction level. Code Fragments (CFs), a form of tree-based programs, introduced feature manipulation to discover important interactions, but they often contain irrelevant information, which causes structural inefficiency. XOF is a recently introduced LCS that uses CFs to encode building blocks of knowledge about feature interaction. This paper aims to optimise the structural efficiency of CFs in XOF. We propose two measures to improve constructing CFs to achieve this goal. Firstly, a new CF-fitness update estimates the applicability of CFs that also considers the structural complexity. The second measure we can use is a niche-based method of generating CFs. These approaches were tested on Even-parity and Hierarchical problems, which require highly complex combinations of input features to capture the data patterns. The results show that the proposed methods significantly increase the structural efficiency of CFs, which is estimated by the rule "generality rate". This results in faster learning performance in the Hierarchical Majority-on problem. Furthermore, a user-set depth limit for CF generation is not needed as the learning agent will not adopt higher-level CFs once optimal CFs are constructed.