论文标题
使用图形离散化快速凸出放松
Fast Convex Relaxations using Graph Discretizations
论文作者
论文摘要
匹配和分区问题是计算机视觉应用程序的基础知识,其中包括多标签分段,立体声估计和光流计算中的示例。这些任务可以作为非凸能最小化问题提出,并通过最近的凸起方法解决了几乎全球最佳的方法。但是,应用这些技术伴随着大量的计算工作,从而降低了它们在实际应用中的可行性。我们讨论将连续分配问题的空间离散化成图形结构,将离散化推广到笛卡尔网格上。这种设置使我们能够忠实地在Slic或Cut-Pursuit构建的超级像素图上工作,与笛卡尔网格相比,大大降低了解除分区问题的计算工作,而最佳的能量值仍然相似:全局匹配仍然是近乎全球最佳的。我们详细讨论了此方法,并通过最小分区和立体声估计在多标签分割中展示了示例,我们证明了所提出的图形离散化可以减少运行时以及记忆消耗的记忆消耗匹配问题的凸出放松,最高可达10倍。
Matching and partitioning problems are fundamentals of computer vision applications with examples in multilabel segmentation, stereo estimation and optical-flow computation. These tasks can be posed as non-convex energy minimization problems and solved near-globally optimal by recent convex lifting approaches. Yet, applying these techniques comes with a significant computational effort, reducing their feasibility in practical applications. We discuss spatial discretization of continuous partitioning problems into a graph structure, generalizing discretization onto a Cartesian grid. This setup allows us to faithfully work on super-pixel graphs constructed by SLIC or Cut-Pursuit, massively decreasing the computational effort for lifted partitioning problems compared to a Cartesian grid, while optimal energy values remain similar: The global matching is still solved near-globally optimal. We discuss this methodology in detail and show examples in multi-label segmentation by minimal partitions and stereo estimation, where we demonstrate that the proposed graph discretization can reduce runtime as well as memory consumption of convex relaxations of matching problems by up to a factor of 10.