论文标题
模拟受限的弹性曲线和应用于圆锥形板凹痕问题
Simulation of constrained elastic curves and application to a conical sheet indentation problem
论文作者
论文摘要
我们考虑将曲线的弯曲行为建模,这些曲线被限制为属于给定的超曲面。相应功能的有限元离散是通过伽马连接严格地证明合理的。研究了梯度流量流量的半平移离散性的稳定性,该梯度流提供了一种确定固定构型的实用方法。考虑的模型的特定应用是在锥形薄板变形的描述中出现的。
We consider variational problems that model the bending behavior of curves that are constrained to belong to given hypersurfaces. Finite element discretizations of corresponding functionals are justified rigorously via Gamma-convergence. The stability of semi-implicit discretizations of gradient flows is investigated which provide a practical method to determine stationary configurations. A particular application of the considered models arises in the description of conical sheet deformations.