论文标题

边界状态,重叠,嵌套和自举广告/DCFT

Boundary states, overlaps, nesting and bootstrapping AdS/dCFT

论文作者

Gombor, Tamas, Bajnok, Zoltan

论文摘要

可集成的边界状态可以从一对歼灭幅度构建,称为$ k $ - 久。这些幅度与镜像有关,它们都满足杨百日式方程,可以扭曲或不介意。我们将这两个概念相互联系,并展示它们是如何通过不间断的对称性固定的,而不间断的对称性与完整的对称性必须形成对称对。我们表明,$ k $ -matrix的扭曲性质意味着重叠的特定选择规则。如果将同一类型的伯特根配对配对,则重叠称为手性,否则它是精神的,它们分别对应于不扭曲和扭曲的$ k $ matrices。我们使用这些发现来开发$ K $ - amatrices的嵌套过程,该过程可自动为高级代数提供分解重叠。我们将这些方法应用于ADS/DCFT中最简单的渐近全环1分函数的计算。在此过程中,我们将YBE的解决方案分类为$ k $ - matrices,其中具有中央扩展的$ \ Mathfrak {su}(2 | 2)_ {C} $对称性,并根据伯特(Bethe)的根和盖丁蛋白决定性的比率计算一般重叠。

Integrable boundary states can be built up from pair annihilation amplitudes called $K$-matrices. These amplitudes are related to mirror reflections and they both satisfy Yang Baxter equations, which can be twisted or untwisted. We relate these two notions to each other and show how they are fixed by the unbroken symmetries, which, together with the full symmetry, must form symmetric pairs. We show that the twisted nature of the $K$-matrix implies specific selection rules for the overlaps. If the Bethe roots of the same type are paired the overlap is called chiral, otherwise it is achiral and they correspond to untwisted and twisted $K$-matrices, respectively. We use these findings to develop a nesting procedure for $K$-matrices, which provides the factorizing overlaps for higher rank algebras automatically. We apply these methods for the calculation of the simplest asymptotic all-loop 1-point functions in AdS/dCFT. In doing so we classify the solutions of the YBE for the $K$-matrices with centrally extended $\mathfrak{su}(2|2)_{c}$ symmetry and calculate the generic overlaps in terms of Bethe roots and ratio of Gaudin determinants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源