论文标题
估计感染的数量以及非药物干预对欧洲国家的Covid-19的影响:技术说明更新
Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in European countries: technical description update
论文作者
论文摘要
在出现了新型冠状病毒(SARS-COV-2)及其在中国以外的蔓延之后,欧洲经历了大型流行病。作为回应,许多欧洲国家已经实施了前所未有的非药物干预措施,包括案例隔离,封闭学校和大学,禁止大众聚会和/或公共活动,以及最近的广泛社会疏远,包括地方和国家锁定。 在此技术更新中,我们扩展了一个半机械贝叶斯分层模型,该模型渗透了这些干预措施的影响并估计随着时间的推移感染的数量。我们的方法假设生殖数的变化(一种传播度量)是对实施的这些干预措施的直接响应,而不是行为的逐渐变化。我们的模型通过从观察到的时间数据向后计算以估计几周前发生的感染次数和传播速率来估算这些变化,从而允许感染和死亡之间存在概率时间滞后。 在此更新中,我们扩展了原始模型[Flaxman,Mishra,Gandy等,2020年,报告#13,伦敦帝国学院],包括(a)人口饱和效应,(b)感染死亡率的事先不确定性,(c)对干预效果和(d)对封闭干预的部分合并的先验更加平衡。我们还包括另外3个国家(希腊,荷兰和葡萄牙)。 该模型代码可在https://github.com/imperialcollegelondon/covid19model/上获得 现在,我们正在网上报告更新模型的结果 我们在单个分层模型中共同估计所有M = 14个国家的参数。推理使用自适应哈密顿蒙特卡洛(HMC)采样器在概率编程语言Stan中进行。
Following the emergence of a novel coronavirus (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics. In response, many European countries have implemented unprecedented non-pharmaceutical interventions including case isolation, the closure of schools and universities, banning of mass gatherings and/or public events, and most recently, wide-scale social distancing including local and national lockdowns. In this technical update, we extend a semi-mechanistic Bayesian hierarchical model that infers the impact of these interventions and estimates the number of infections over time. Our methods assume that changes in the reproductive number - a measure of transmission - are an immediate response to these interventions being implemented rather than broader gradual changes in behaviour. Our model estimates these changes by calculating backwards from temporal data on observed to estimate the number of infections and rate of transmission that occurred several weeks prior, allowing for a probabilistic time lag between infection and death. In this update we extend our original model [Flaxman, Mishra, Gandy et al 2020, Report #13, Imperial College London] to include (a) population saturation effects, (b) prior uncertainty on the infection fatality ratio, (c) a more balanced prior on intervention effects and (d) partial pooling of the lockdown intervention covariate. We also (e) included another 3 countries (Greece, the Netherlands and Portugal). The model code is available at https://github.com/ImperialCollegeLondon/covid19model/ We are now reporting the results of our updated model online at https://mrc-ide.github.io/covid19estimates/ We estimated parameters jointly for all M=14 countries in a single hierarchical model. Inference is performed in the probabilistic programming language Stan using an adaptive Hamiltonian Monte Carlo (HMC) sampler.