论文标题

电阻磁流失动力学的虚拟元素方法

The virtual element method for resistive magnetohydrodynamics

论文作者

Alvarez, S. Naranjo, Bokil, V. A., Gyrya, V., Manzini, G.

论文摘要

我们提出了一个虚拟元素方法(VEM),用于在两个空间维度中电阻磁流体动力学(MHD)模型的电磁子系统的数值近似。虚拟元素方法的主要优点包括多边形网格的灵活性以及对磁通场对磁通量的无差约束。在这项工作中,我们严格地证明了该方法的适当性和离散磁通量场的电磁性质。我们还得出稳定能量估计。该方法的设计包括三个选择,用于构建节点质量矩阵和标准以进行更多选择。我们提出了一组数字实验,它们独立验证理论结果。数值实验包括收敛速率研究,能量估计和磁通量场上无差异状况的验证。所有这些数值实验均已在三角形,扰动的四边形和伏诺诺网格上进行。最后,我们在Hartmann流量的数值模型上演示了VEM方法的开发。

We present a virtual element method (VEM) for the numerical approximation of the electromagnetics subsystem of the resistive magnetohydrodynamics (MHD) model in two spatial dimensions. The major advantages of the virtual element method include great flexibility of polygonal meshes and automatic divergence-free constraint on the magnetic flux field. In this work, we rigorously prove the well-posedness of the method and the solenoidal nature of the discrete magnetic flux field. We also derive stability energy estimates. The design of the method includes three choices for the construction of the nodal mass matrix and criteria to more alternative. We present a set of numerical experiments that independently validate theoretical results. The numerical experiments include the convergence rate study, energy estimates and verification of the divergence-free condition on the magnetic flux field. All these numerical experiments have been performed on triangular, perturbed quadrilateral and Voronoi meshes. Finally, We demonstrate the development of the VEM method on a numerical model for the Hartmann flow.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源