论文标题

机器学习计量经济学:贝叶斯算法和方法

Machine Learning Econometrics: Bayesian algorithms and methods

论文作者

Korobilis, Dimitris, Pettenuzzo, Davide

论文摘要

随着全球产生的经济和其他数据的数量大大增加,对后代的计量经济学家将面临挑战,是针对具有大量信息集的经验模型来推断有效的算法。本章对计量经济学的贝叶斯推论的流行估计算法进行了综述,并调查了机器学习和计算科学中开发的替代算法,这些算法允许在高维环境中有效计算。重点是每种算法的可伸缩性和并行性,以及它们在经济学和金融经验的各种经验环境中采用的能力。

As the amount of economic and other data generated worldwide increases vastly, a challenge for future generations of econometricians will be to master efficient algorithms for inference in empirical models with large information sets. This Chapter provides a review of popular estimation algorithms for Bayesian inference in econometrics and surveys alternative algorithms developed in machine learning and computing science that allow for efficient computation in high-dimensional settings. The focus is on scalability and parallelizability of each algorithm, as well as their ability to be adopted in various empirical settings in economics and finance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源