论文标题

接近最佳的稀疏度受限组测试:改进的界限和算法

Near optimal sparsity-constrained group testing: improved bounds and algorithms

论文作者

Gebhard, Oliver, Hahn-Klimroth, Max, Parczyk, Olaf, Penschuck, Manuel, Rolvien, Maurice, Scarlett, Jonathan, Tan, Nelvin

论文摘要

无适量的非自适应组测试的最新进展导致了精确的渐近表征,即在sublinear egimime $ k = n^θ$中所需的测试数量($ n $ in(0,1)$),其中$ n $的个人中有$ k $中的$ k $感染了$ n $。但是,在现实世界实践约束下,所需的测试数量可能会大大增加,特别是包括可以放入个人的最大数量$δ$的范围,或者在给定测试中的最大数量$γ$。尽管以前的作品为这些设置提供了恢复保证,但可实现性和匡威界限之间仍然存在很大的差距。在本文中,我们实质上或完全缩小了几个最突出的差距。在$δ$ - 细分项目的情况下,我们表明,确定的缺陷(DD)算法与随机常规设计相结合在密集缩放方案中均无最佳,并且最适合于$ \ eul $ $ $ \ eul $的最佳选择。我们通过增强最著名的可实现性和匡威界限来确定这一点。在$γ$尺寸的测试的情况下,我们提供了对制度$γ=θ(1)$的全面分析,并再次建立一个精确的阈值,证明了SCOMP(DD的略微改进)配备有量身定制的合并方案的渐近最优性。最后,对于这两种设置中的每一个,我们基于顺序分裂提供了近乎最佳的自适应算法,并证明了最佳自适应和非自适应算法的性能之间的差距。

Recent advances in noiseless non-adaptive group testing have led to a precise asymptotic characterization of the number of tests required for high-probability recovery in the sublinear regime $k = n^θ$ (with $θ\in (0,1)$), with $n$ individuals among which $k$ are infected. However, the required number of tests may increase substantially under real-world practical constraints, notably including bounds on the maximum number $Δ$ of tests an individual can be placed in, or the maximum number $Γ$ of individuals in a given test. While previous works have given recovery guarantees for these settings, significant gaps remain between the achievability and converse bounds. In this paper, we substantially or completely close several of the most prominent gaps. In the case of $Δ$-divisible items, we show that the definite defectives (DD) algorithm coupled with a random regular design is asymptotically optimal in dense scaling regimes, and optimal to within a factor of $\eul$ more generally; we establish this by strengthening both the best known achievability and converse bounds. In the case of $Γ$-sized tests, we provide a comprehensive analysis of the regime $Γ= Θ(1)$, and again establish a precise threshold proving the asymptotic optimality of SCOMP (a slight refinement of DD) equipped with a tailored pooling scheme. Finally, for each of these two settings, we provide near-optimal adaptive algorithms based on sequential splitting, and provably demonstrate gaps between the performance of optimal adaptive and non-adaptive algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源