论文标题

CFR-RL:通过SDN进行加固学习的交通工程

CFR-RL: Traffic Engineering with Reinforcement Learning in SDN

论文作者

Zhang, Junjie, Ye, Minghao, Guo, Zehua, Yen, Chen-Yu, Chao, H. Jonathan

论文摘要

传统的交通工程(TE)解决方案可以通过重新路由尽可能多的流量来实现最佳或近乎最佳的性能。但是,当经常在网络中重新布局流动时,它们通常不会考虑负面影响,例如包装中的数据包。为了减轻网络干扰的影响,一种有前途的TE解决方案是使用相等的多路径(ECMP)转发大多数流量流,并使用软件定义的网络(SDN)选择性地重新路由一些关键流以平衡网络的链接利用。但是,临界流重新布置并不是微不足道的,因为临界流选择的解决方案空间是巨大的。此外,由于基于固定和简单的规则,不可能针对此问题设计启发式算法,因为基于规则的启发式方法无法适应流量矩阵和网络动力学的更改。在本文中,我们提出了CFR-RL(临界流重新布置 - 强化学习),这是一种基于强化学习的方案,该方案学习了一个策略,可以自动为每个给定的流量矩阵选择关键流动。然后,CFR-RL通过制定和求解简单的线性编程(LP)问题来重新路由这些选定的关键流以平衡网络的链接利用。广泛的评估表明,CFR-RL仅通过重新路由10%-21.3%的总流量来实现近乎最佳的性能。

Traditional Traffic Engineering (TE) solutions can achieve the optimal or near-optimal performance by rerouting as many flows as possible. However, they do not usually consider the negative impact, such as packet out of order, when frequently rerouting flows in the network. To mitigate the impact of network disturbance, one promising TE solution is forwarding the majority of traffic flows using Equal-Cost Multi-Path (ECMP) and selectively rerouting a few critical flows using Software-Defined Networking (SDN) to balance link utilization of the network. However, critical flow rerouting is not trivial because the solution space for critical flow selection is enormous. Moreover, it is impossible to design a heuristic algorithm for this problem based on fixed and simple rules, since rule-based heuristics are unable to adapt to the changes of the traffic matrix and network dynamics. In this paper, we propose CFR-RL (Critical Flow Rerouting-Reinforcement Learning), a Reinforcement Learning-based scheme that learns a policy to select critical flows for each given traffic matrix automatically. CFR-RL then reroutes these selected critical flows to balance link utilization of the network by formulating and solving a simple Linear Programming (LP) problem. Extensive evaluations show that CFR-RL achieves near-optimal performance by rerouting only 10%-21.3% of total traffic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源