论文标题
三维空间中的多边形
Polygons in three-dimensional space
论文作者
论文摘要
令$ p = a_1 \ ldots a_n $是三维空间中的通用多边形,让$ v_1,v_2,\ ldots,v_n $ be vectors $ \ overline {a_1a_2},\ edimalline {a_2a_3},a_2a_3},\ ldots,\ ldots,\ ldots,\ line_na_na = $ p $将称为\ emph {常规},如果存在vectors $ u_1,\ ldots,u_n $,使得交叉产品$ [u_1,u_2],[u_2,u_3],\ ldots,[u_n,u_1] $等于vectors $ v_2,v_2,v_2,v_3,v_3,\ ldots $ ldots,\ ldots,v_1 $ ldots,v。在这种情况下,polygon $ p'$,定义为向量$ u_2-u_1,u_3-u_2,\ ldots,u_1-u_n $将称为\ emph {derived polygon}或\ emph {derivative} polygon $ p $。在这项工作中,我们为规律性制定条件,并讨论$ n = 4,5,6 $的衍生多边形的几何特性。
Let $P=A_1\ldots A_n$ be a generic polygon in three-dimensional space and let $v_1,v_2,\ldots,v_n$ be vectors $\overline{A_1A_2},\overline{A_2A_3},\ldots,\overline{A_nA_1}$, respectively. $P$ will be called \emph{regular}, if there exist vectors $u_1,\ldots,u_n$ such that cross products $[u_1,u_2],[u_2,u_3],\ldots,[u_n,u_1]$ are equal to vectors $v_2,v_3,\ldots,v_1$, respectively. In this case the polygon $P'$, defined be vectors $u_2-u_1,u_3-u_2,\ldots,u_1-u_n$ will be called the \emph{derived polygon} or the \emph{derivative} of the polygon $P$. In this work we formulate conditions for regularity and discuss geometric properties of derived polygons for $n=4,5,6$.