论文标题

估计分数Sobolev空间中的翻译和泰勒扩展

Estimates on translations and Taylor expansions in fractional Sobolev spaces

论文作者

del Teso, Félix, Gómez-Castro, David, Vázquez, Juan Luis

论文摘要

在本文中,我们研究了(归一化的)gagliardo semi-Norms $ [u] _ {w^{s,p}(\ Mathbb {r}^n)} $控制翻译。特别是,我们证明了$ \ | u(\ cdot + y) - u \ | _ {l^p(\ mathbb {r}^n)} \ le c [u c [u] _ {w^{s,p}(\ mathbb {r}^n)} | y | y | $ c $仅取决于$ n $。然后,我们获得了此结果的相应高阶版本:我们在泰勒扩展中获得了误差项的分数。我们还提出了两个结果的相关含义。首先,我们获得了$ w^{s,p}的几种紧凑型嵌入(\ mathbb {r}^n)$的直接证明,其中fréchet-kolmogorov Theorem被以已知速率应用。我们还得出了与合适的mollifier的函数卷积的收敛速率。第三,我们获得了$ w^{s,p}(\ mathbb {r}^n))$的有限差异化离散的分数。

In this paper we study how the (normalised) Gagliardo semi-norms $[u]_{W^{s,p} (\mathbb{R}^n)}$ control translations. In particular, we prove that $\| u(\cdot + y) - u \|_{L^p (\mathbb{R}^n)} \le C [ u ] _{W^{s,p} (\mathbb{R}^n)} |y|^s$ for $n\geq1$, $s \in [0,1]$ and $p \in [1,+\infty]$, where $C$ depends only on $n$. We then obtain a corresponding higher-order version of this result: we get fractional rates of the error term in the Taylor expansion. We also present relevant implications of our two results. First, we obtain a direct proof of several compact embedding of $W^{s,p}(\mathbb{R}^n)$ where the Fréchet-Kolmogorov Theorem is applied with known rates. We also derive fractional rates of convergence of the convolution of a function with suitable mollifiers. Thirdly, we obtain fractional rates of convergence of finite-difference discretizations for $W^{s,p} (\mathbb{R}^n))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源