论文标题

开发用于使用机器学习的高保真模拟器用于广义基于光度法的空间对象分类

Development of a High Fidelity Simulator for Generalised Photometric Based Space Object Classification using Machine Learning

论文作者

Allworth, James, Windrim, Lloyd, Wardman, Jeffrey, Kucharski, Daniel, Bennett, James, Bryson, Mitch

论文摘要

本文介绍了开发深度学习分类器的初始阶段,用于广义居民空间对象(RSO)表征,该表征将高保真模拟的光曲线与传递学习结合在一起,以提高经过实际数据训练的对象表征模型的性能。 RSO的分类和表征是空间情境意识(SSA)的重要目标,以提高轨道预测的准确性。本文的具体重点是开发高保真模拟环境,以产生逼真的光曲线。该模拟器采用RSO的纹理几何模型以及对象的ephemeris,并使用Blender生成RSO的照片真实图像,然后对其进行处理以提取光曲线。将模拟的光曲线与从望远镜图像中提取的真实光曲线进行了比较,以为模拟环境提供验证。未来的工作将涉及进一步的验证,并使用模拟器来生成逼真的光曲线数据集,以训练神经网络。

This paper presents the initial stages in the development of a deep learning classifier for generalised Resident Space Object (RSO) characterisation that combines high-fidelity simulated light curves with transfer learning to improve the performance of object characterisation models that are trained on real data. The classification and characterisation of RSOs is a significant goal in Space Situational Awareness (SSA) in order to improve the accuracy of orbital predictions. The specific focus of this paper is the development of a high-fidelity simulation environment for generating realistic light curves. The simulator takes in a textured geometric model of an RSO as well as the objects ephemeris and uses Blender to generate photo-realistic images of the RSO that are then processed to extract the light curve. Simulated light curves have been compared with real light curves extracted from telescope imagery to provide validation for the simulation environment. Future work will involve further validation and the use of the simulator to generate a dataset of realistic light curves for the purpose of training neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源