论文标题
EEG信号分类的联合转移学习
Federated Transfer Learning for EEG Signal Classification
论文作者
论文摘要
缺乏大型数据集的限制了大脑计算机界面(BCI)领域中深度学习方法(DL)方法的成功。与脑电图信号相关的隐私问题限制了通过多个小型企业共同培训机器学习模型来构建大型EEG-BCI数据集的可能性。因此,在本文中,我们提出了一种基于联邦学习框架的EEG分类的新型隐私DL架构,称为EEG分类,称为联合转移学习(FTL)。该构建结构使用单审判协方差矩阵,借助域自适应技术从多主体EEG数据中提取常见的歧视性信息。我们评估了Physionet数据集上提出的体系结构的性能,以进行2级运动图像分类。在避免实际数据共享的同时,我们的FTL方法在受试者自适应分析中的分类精度提高了2%。同样,在没有多主体数据的情况下,与其他最先进的DL架构相比,我们的体系结构可提供6%的精度。
The success of deep learning (DL) methods in the Brain-Computer Interfaces (BCI) field for classification of electroencephalographic (EEG) recordings has been restricted by the lack of large datasets. Privacy concerns associated with EEG signals limit the possibility of constructing a large EEG-BCI dataset by the conglomeration of multiple small ones for jointly training machine learning models. Hence, in this paper, we propose a novel privacy-preserving DL architecture named federated transfer learning (FTL) for EEG classification that is based on the federated learning framework. Working with the single-trial covariance matrix, the proposed architecture extracts common discriminative information from multi-subject EEG data with the help of domain adaptation techniques. We evaluate the performance of the proposed architecture on the PhysioNet dataset for 2-class motor imagery classification. While avoiding the actual data sharing, our FTL approach achieves 2% higher classification accuracy in a subject-adaptive analysis. Also, in the absence of multi-subject data, our architecture provides 6% better accuracy compared to other state-of-the-art DL architectures.