论文标题

对流低质量到高质量第二拉森核心的诞生

Birth of convective low-mass to high-mass second Larson cores

论文作者

Bhandare, Asmita, Kuiper, Rolf, Henning, Thomas, Fendt, Christian, Flock, Mario, Marleau, Gabriel-Dominique

论文摘要

恒星形成是磁化分子云中冷,致密气体的重力崩溃的最终产物。这种多尺度的情况是通过形成两个准静态核心的,涉及复杂的物理过程,这些过程需要强大的,自吻的数值处理。这项研究的目的是了解第二个拉尔森核心的形成和演变及其性质对初始云核心质量的依赖性。我们使用冥王星代码执行高分辨率,1D和2D RHD塌陷模拟。我们包括自我实力,并使用灰色FLD近似进行辐射传递。此外,我们将气体EOS密度和温度依赖性热力学量用于解释诸如解离,电离以及分子振动和旋转等效果。使用1D研究研究了第二核的特性,该研究涵盖了从0.5到100 $ m _ {\ odot} $的广泛的初始云核心质量。此外,我们将1、5、10和20 $ M _ {\ odot} $的几种情况扩展到2D崩溃模拟。我们遵循第二个核心在成立后100年以100年的$ \ geq的演变,每种不旋转案例的演变。我们的结果表明,几个第二个核心特性依赖于初始云核心质量。由于前所未有的分辨率,我们的2D非旋转崩溃研究首次表明,对流是在第二核的外层中产生的,该对流是由于1 $ M _ {\ odot} $ cloud could Core的重力崩溃而形成的。此外,我们发现第二个积聚冲击不稳定性触发的第二个积聚冲击前锋的大规模振荡,这在恒星的早期进化阶段之前没有看到。我们预测,第二核内的物理学不会受到磁场的影响或初始云旋转的影响。

Stars form as an end product of the gravitational collapse of cold, dense gas in magnetized molecular clouds. This multi-scale scenario occurs via the formation of two quasi-hydrostatic cores and involves complex physical processes, which require a robust, self-consistent numerical treatment. The aim of this study is to understand the formation and evolution of the second Larson core and the dependence of its properties on the initial cloud core mass. We used the PLUTO code to perform high resolution, 1D and 2D RHD collapse simulations. We include self-gravity and use a grey FLD approximation for the radiative transfer. Additionally, we use for the gas EOS density- and temperature-dependent thermodynamic quantities to account for the effects such as dissociation, ionisation, and molecular vibrations and rotations. Properties of the second core are investigated using 1D studies spanning a wide range of initial cloud core masses from 0.5 to 100 $M_{\odot}$. Furthermore, we expand to 2D collapse simulations for a few cases of 1, 5, 10, and 20 $M_{\odot}$. We follow the evolution of the second core for $\geq$ 100 years after its formation, for each of these non-rotating cases. Our results indicate a dependence of several second core properties on the initial cloud core mass. For the first time, due to an unprecedented resolution, our 2D non-rotating collapse studies indicate that convection is generated in the outer layers of the second core, which is formed due to the gravitational collapse of a 1 $M_{\odot}$ cloud core. Additionally, we find large-scale oscillations of the second accretion shock front triggered by the standing accretion shock instability, which has not been seen before in early evolutionary stages of stars. We predict that the physics within the second core would not be significantly influenced by the effects of magnetic fields or an initial cloud rotation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源