论文标题
樱桃 - Quasirandom的汉密尔顿3圈
Hamiltonicity in Cherry-quasirandom 3-graphs
论文作者
论文摘要
我们表明,对于任何固定的$α> 0 $,樱桃 - quasirandom的正密度为3颗图和足够大的订单$ n $,最低顶点度$α\ binom n2 $具有紧密的汉密尔顿周期。这解决了Aigner-Horev和Levy的猜想。
We show that for any fixed $α>0$, cherry-quasirandom 3-graphs of positive density and sufficiently large order $n$ with minimum vertex degree $α\binom n2$ have a tight Hamilton cycle. This solves a conjecture of Aigner-Horev and Levy.