论文标题
自动驾驶汽车指导的子目标计划算法
Subgoal Planning Algorithm for Autonomous Vehicle Guidance
论文作者
论文摘要
训练有素的人具有高度敏捷的空间技能,使他们能够在苛刻的任务和条件下操作具有复杂动态的车辆。先前的工作表明,人类通过使用诸如满意,学习层次任务结构以及使用运动原始元素的策略来实现这一绩效。有效和通用解决方案的一个关键方面是将任务分解为一系列由子目标表示的较小任务。本工作使用受约束最佳控制理论的属性来定义指定候选子目标状态并实现这种分解的条件。所提出的子观念算法使用图形搜索来确定将一系列不受约束的运动引导元素连接到约束解决方案轨迹的亚目标序列。在仿真实验中,与RRT*基准测试相比,亚距引导算法的性能和计算时间更少。示例说明了这种方法在多种环境类型中的鲁棒性和多功能性。
Trained humans exhibit highly agile spatial skills, enabling them to operate vehicles with complex dynamics in demanding tasks and conditions. Prior work shows that humans achieve this performance by using strategies such as satisficing, learning hierarchical task structure, and using a library of motion primitive elements. A key aspect of efficient and versatile solutions is the decomposition of a task into a sequence of smaller tasks, represented by subgoals. The present work uses properties of constrained optimal control theory to define conditions that specify candidate subgoal states and enable this decomposition. The proposed subgoal algorithm uses graph search to determine a subgoal sequence that links a series of unconstrained motion guidance elements into a constrained solution trajectory. In simulation experiments, the subgoal guidance algorithm generates paths with higher performance and less computation time than an RRT* benchmark. Examples illustrate the robustness and versatility of this approach in multiple environment types.