论文标题
尺寸感知的遗传编程的健身景观分析具有Feynman方程
Fitness Landscape Analysis of Dimensionally-Aware Genetic Programming Featuring Feynman Equations
论文作者
论文摘要
遗传编程是一种用于符号回归的技术:找到与未知函数的数据相匹配的符号表达式。为了使符号回归更加有效,还可以使用尺寸感知的遗传编程来约束方程式的物理单位。然而,尚无对有多少维度意识在回归过程中有助于的正式分析。在本文中,我们对Richard Feynmans著名讲座的一部分方程式进行了DimensionallyAware遗传编程搜索空间进行健身景观分析。我们定义了一个初始化过程和随附的邻里运营商集合,用于在物理单位约束中进行本地搜索。我们的实验表明,有关变量维度的附加信息可以有效地指导搜索算法。尽管如此,仍需要进一步分析尺寸感知和标准遗传编程景观之间的差异,以帮助设计有效的进化算子,以在尺寸感知的回归中使用。
Genetic programming is an often-used technique for symbolic regression: finding symbolic expressions that match data from an unknown function. To make the symbolic regression more efficient, one can also use dimensionally-aware genetic programming that constrains the physical units of the equation. Nevertheless, there is no formal analysis of how much dimensionality awareness helps in the regression process. In this paper, we conduct a fitness landscape analysis of dimensionallyaware genetic programming search spaces on a subset of equations from Richard Feynmans well-known lectures. We define an initialisation procedure and an accompanying set of neighbourhood operators for conducting the local search within the physical unit constraints. Our experiments show that the added information about the variable dimensionality can efficiently guide the search algorithm. Still, further analysis of the differences between the dimensionally-aware and standard genetic programming landscapes is needed to help in the design of efficient evolutionary operators to be used in a dimensionally-aware regression.