论文标题
拉曼Qubit的高保真复合量子门
High-fidelity composite quantum gates for Raman qubits
论文作者
论文摘要
我们提出了一种使用复合脉冲技术设计强大和高保真量子逻辑门的一般系统方法。我们使用两种数学工具 - 莫里斯 - 近地区和Majorana分解 - 将三州拉曼系统减少到同等的两国系统。它们使我们能够通过将其扩展到拉曼Qubits来利用为两国系统设计的众多复合脉冲。我们通过相同的均匀方法来构建不,哈达姆和旋转门:对于每个门,脉冲的脉冲序列相同,但每个门具有相同的相位,但拉曼耦合的比率不同。相位栅极是通过使用Majoraana分解来构建的。所有复合拉曼大门都具有很高的忠诚度,超出了量子计算基准值,并且对实验误差的鲁棒性具有显着的鲁棒性。所有复合阶段和脉冲区域均通过分析公式给出,这使该方法可扩展到任何所需的准确性和鲁棒性。
We present a general systematic approach to design robust and high-fidelity quantum logic gates with Raman qubits using the technique of composite pulses. We use two mathematical tools -- the Morris-Shore and Majorana decompositions -- to reduce the three-state Raman system to an equivalent two-state system. They allow us to exploit the numerous composite pulses designed for two-state systems by extending them to Raman qubits. We construct the NOT, Hadamard, and rotation gates by means of the Morris-Shore transformation with the same uniform approach: sequences of pulses with the same phases for each gate but different ratios of Raman couplings. The phase gate is constructed by using the Majorana decomposition. All composite Raman gates feature very high fidelity, beyond the quantum computation benchmark values, and significant robustness to experimental errors. All composite phases and pulse areas are given by analytical formulas, which makes the method scalable to any desired accuracy and robustness to errors.