论文标题
桥深度表征了哪些顶点盖的结构参数化允许多项式内核
Bridge-Depth Characterizes which Structural Parameterizations of Vertex Cover Admit a Polynomial Kernel
论文作者
论文摘要
我们研究了顶点覆盖问题的结构参数化的内核化复杂性。在这里,目标是找到一种多项式预处理算法,该算法可以将顶点覆盖问题的任何实例(g,k)$降低到同等的$(g,k)$,该算法的大小是$ g $的预测复杂性参数的大小。一长串以前的研究涉及基于将$ g $减少到一个简单的图类$ \ Mathcal {f} $的成员所需的顶点删除的参数化,例如森林,有限的树深度图,以及最高学位的最高图。我们着手找到最通用的图形类$ \ MATHCAL {f} $,该顶点封面通过输入图的顶点 - 删除距离为$ \ Mathcal {f} $参数化,承认了多项式kernelization。我们给出了少量封闭的图族$ \ mathcal {f} $的完整表征,为之存在。我们介绍了一个称为桥梁深度的新图参数,并证明当且仅当$ \ Mathcal {f} $具有有限的桥梁数据时,就存在多项式内核化。该证明是基于桥梁深度与最小阻止集合集合之间的有趣连接,这些连接是图形集中的最小阻塞集,它们是顶点集,其删除降低了独立性数字。
We study the kernelization complexity of structural parameterizations of the Vertex Cover problem. Here, the goal is to find a polynomial-time preprocessing algorithm that can reduce any instance $(G,k)$ of the Vertex Cover problem to an equivalent one, whose size is polynomial in the size of a pre-determined complexity parameter of $G$. A long line of previous research deals with parameterizations based on the number of vertex deletions needed to reduce $G$ to a member of a simple graph class $\mathcal{F}$, such as forests, graphs of bounded tree-depth, and graphs of maximum degree two. We set out to find the most general graph classes $\mathcal{F}$ for which Vertex Cover parameterized by the vertex-deletion distance of the input graph to $\mathcal{F}$, admits a polynomial kernelization. We give a complete characterization of the minor-closed graph families $\mathcal{F}$ for which such a kernelization exists. We introduce a new graph parameter called bridge-depth, and prove that a polynomial kernelization exists if and only if $\mathcal{F}$ has bounded bridge-depth. The proof is based on an interesting connection between bridge-depth and the size of minimal blocking sets in graphs, which are vertex sets whose removal decreases the independence number.