论文标题
无人空中移动网络的综合设计:一种数据驱动风险的方法
Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven Risk-Averse Approach
论文作者
论文摘要
无人驾驶逻辑的真正挑战是开发经济上可行的无人空中移动网络(UAMN)。在本文中,我们提出了一个集成的机场位置(战略决策)和计划计划(操作决策)优化框架,以最大程度地降低网络的总成本,同时保证流量限制,容量限制和电力约束。为了面临需求不确定性的设施昂贵的长期基础设施计划,我们基于Wasserstein距离开发了一个数据驱动的避开风险的两阶段随机优化模型。我们开发了一种重新制定技术,该技术简化了原始模型中最糟糕的预期术语,并相应地获得了可骨折的Min-Max解决方案程序。使用Lagrange乘数,我们成功地分解了决策变量并降低了计算的复杂性。为了提供管理洞察,我们设计了特定的数值示例。例如,我们发现最佳网络配置受通道能力中的“池效应”的影响。我们DRO框架的一个不错的功能是,最佳网络设计在需求不确定性下相对稳健。有趣的是,可以选择没有历史需求记录的候选节点来定位机场。我们证明了我们的模型与我们的行业合作伙伴的真实医疗资源运输问题的应用,并将血液捐赠给了中国杭州的一家血库。
The real challenge in drone-logistics is to develop an economically-feasible Unmanned Aerial Mobility Network (UAMN). In this paper, we propose an integrated airport location (strategic decision) and routes planning (operational decision) optimization framework to minimize the total cost of the network, while guaranteeing flow constraints, capacity constraints, and electricity constraints. To facility expensive long-term infrastructure planning facing demand uncertainty, we develop a data-driven risk-averse two-stage stochastic optimization model based on the Wasserstein distance. We develop a reformulation technique which simplifies the worst-case expectation term in the original model, and obtain a fractable Min-Max solution procedure correspondingly. Using Lagrange multipliers, we successfully decompose decision variables and reduce the complexity of computation. To provide managerial insights, we design specific numerical examples. For example, we find that the optimal network configuration is affected by the "pooling effects" in channel capacities. A nice feature of our DRO framework is that the optimal network design is relatively robust under demand uncertainty. Interestingly, a candidate node without historical demand records can be chosen to locate an airport. We demonstrate the application of our model for a real medical resources transportation problem with our industry partner, collecting donated blood to a blood bank in Hangzhou, China.