论文标题

深度插值网络的应用用于生理时间序列的聚类

Application of Deep Interpolation Network for Clustering of Physiologic Time Series

论文作者

Li, Yanjun, Ren, Yuanfang, Loftus, Tyler J., Datta, Shounak, Ruppert, M., Guan, Ziyuan, Wu, Dapeng, Rashidi, Parisa, Ozrazgat-Baslanti, Tezcan, Bihorac, Azra

论文摘要

背景:在医院入院的早期阶段,临床医生必须使用有限的信息来做出诊断和治疗决策,因为患者的敏锐度发展。但是,很常见的是,来自患者的时间序列生命体征信息稀疏和不规则收集,这对机器 /深度学习技术构成了重大挑战,可以分析和促进临床医生改善人类健康结果。为了解决这个问题,我们提出了一个新型的深插插网络,以从稀疏和不规则采样的时间序列中提取潜在表示,在住院后六个小时内测得的生命体征。方法:我们为所有人(n = 75,762)的电子健康记录数据的单中心纵向数据集(n = 75,762)持续了六个小时或更长时间,使用了55%的数据集进行培训,验证23%,进行测试22%。提取六个生命体征(收缩压,舒张压,心率,温度,血氧饱和度和呼吸率)的六个小时内的所有原始时间序列。提出了一个深层插值网络,以从这种不规则和稀疏的多元时间序列数据中学习,以提取固定的低维潜在模式。我们使用K-均值聚类算法来将导致7个簇的患者入院群体簇。调查结果:培训,验证和测试队列的年龄相似(55-57岁),性别(55%女性)和入院生命体征。确定了七个不同的簇。 m解释:在医院患者的异质队列中,深层插值网络从入院六个小时内测得的生命体征数据中提取了表示。这种方法可能对在时间限制和不确定性下对临床决策支持具有重要意义。

Background: During the early stages of hospital admission, clinicians must use limited information to make diagnostic and treatment decisions as patient acuity evolves. However, it is common that the time series vital sign information from patients to be both sparse and irregularly collected, which poses a significant challenge for machine / deep learning techniques to analyze and facilitate the clinicians to improve the human health outcome. To deal with this problem, We propose a novel deep interpolation network to extract latent representations from sparse and irregularly sampled time-series vital signs measured within six hours of hospital admission. Methods: We created a single-center longitudinal dataset of electronic health record data for all (n=75,762) adult patient admissions to a tertiary care center lasting six hours or longer, using 55% of the dataset for training, 23% for validation, and 22% for testing. All raw time series within six hours of hospital admission were extracted for six vital signs (systolic blood pressure, diastolic blood pressure, heart rate, temperature, blood oxygen saturation, and respiratory rate). A deep interpolation network is proposed to learn from such irregular and sparse multivariate time series data to extract the fixed low-dimensional latent patterns. We use k-means clustering algorithm to clusters the patient admissions resulting into 7 clusters. Findings: Training, validation, and testing cohorts had similar age (55-57 years), sex (55% female), and admission vital signs. Seven distinct clusters were identified. M Interpretation: In a heterogeneous cohort of hospitalized patients, a deep interpolation network extracted representations from vital sign data measured within six hours of hospital admission. This approach may have important implications for clinical decision-support under time constraints and uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源