论文标题

模块化Weyl-kac特征公式

The modular Weyl-Kac character formula

论文作者

Bowman, Chris, Hazi, Amit, Norton, Emily

论文摘要

我们对抗球形Hecke类别的不可约定的分级表示分类并明确构建了一个程度。这些同质表示中的每一个都是一维的,可以通过涉及该类别的每个(无限维)标准表示的BGG分辨率来共同构建。因此,我们确定了一个任意Coxeter组和任意抛物线子组的逆抛物线$ P $ -KAZHDAN--LUSZTIG矩阵的完整第一行。这将Weyl-kac字符公式概括为所有Coxeter系统(及其抛物面),并证明了这种广义公式相对于对任意领域的基础变化而言是刚性的。

We classify and explicitly construct the irreducible graded representations of anti-spherical Hecke categories which are concentrated in one degree. Each of these homogeneous representations is one-dimensional and can be cohomologically constructed via a BGG resolution involving every (infinite dimensional) standard representation of the category. We hence determine the complete first row of the inverse parabolic $p$-Kazhdan--Lusztig matrix for an arbitrary Coxeter group and an arbitrary parabolic subgroup. This generalises the Weyl--Kac character formula to all Coxeter systems (and their parabolics) and proves that this generalised formula is rigid with respect to base change to an arbitrary field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源