论文标题
rényi熵和子系统距离有限尺寸和临界链中的热状态的距离
Rényi entropy and subsystem distances in finite size and thermal states in critical XY chains
论文作者
论文摘要
我们以一个间隔研究了Rényi熵和子系统的距离,以临界XY链中的有限尺寸和热状态,重点介绍了具有零横向场的关键ISING链和XX链。我们以数值构造降低的密度矩阵,并计算von Neumann熵,rényi熵,子系统痕量距离,schatten两距离和相对熵。由于关键Ising链的连续极限和XX链的零场分别为二维无质量无质量的主要主要和迪拉克·费尔米昂理论,这些理论是保形场理论,因此我们将自旋链数值结果与CFT的分析结果进行了比较,并在连续限值中找到了完美的匹配。
We study the Rényi entropy and subsystem distances on one interval for the finite size and thermal states in the critical XY chains, focusing on the critical Ising chain and XX chain with zero transverse field. We construct numerically the reduced density matrices and calculate the von Neumann entropy, Rényi entropy, subsystem trace distance, Schatten two-distance, and relative entropy. As the continuum limit of the critical Ising chain and XX chain with zero field are, respectively, the two-dimensional free massless Majorana and Dirac fermion theories, which are conformal field theories, we compare the spin chain numerical results with the analytical results in CFTs and find perfect matches in the continuum limit.