论文标题

通过空间分析量化的耀斑加速电子的演变

Evolution of Flare-accelerated Electrons Quantified by Spatially Resolved Analysis

论文作者

Kuroda, Natsuha, Fleishman, Gregory D., Gary, Dale E., Nita, Gelu M., Chen, Bin, Yu, Sijie

论文摘要

在太阳耀斑中加速的非热电子在两个不同的高度互补结构域中产生电磁发射 - 硬X射线(HXR)和微波炉(MWS)。本文报告了2017年9月9日发生的M1.2耀斑扩展的欧文山谷太阳能电池阵列的MW成像光谱观测值,我们从中推断出不断发展的冠状参数图。我们使用互补的Reuven Reuven Ramaty高能量光谱成像室HXR数据共同分析这些数据,以揭示燃烧体积中非热电子的空间分辨进化。我们发现,负责MW发射的非热电子分布的高能部分显示出比负责HXR发射的低能量部分的更突出的演化(以强频谱硬化的形式)。我们表明,根据简化的陷阱加沉淀模型,具有持续的非热电子注入/加速度,该趋势与单个电子种群一致,非热电子的注入/加速度,该模型会产生双波动law,并稳定地增加破裂的能量。

Nonthermal electrons accelerated in solar flares produce electromagnetic emission in two distinct, highly complementary domains - hard X-rays (HXRs) and microwaves (MWs). This paper reports MW imaging spectroscopy observations from the Expanded Owens Valley Solar Array of an M1.2 flare that occurred on 2017 September 9, from which we deduce evolving coronal parameter maps. We analyze these data jointly with the complementary Reuven Ramaty High-Energy Solar Spectroscopic Imager HXR data to reveal the spatially-resolved evolution of the nonthermal electrons in the flaring volume. We find that the high-energy portion of the nonthermal electron distribution, responsible for the MW emission, displays a much more prominent evolution (in the form of strong spectral hardening) than the low-energy portion, responsible for the HXR emission. We show that the revealed trends are consistent with a single electron population evolving according to a simplified trap-plus-precipitation model with sustained injection/acceleration of nonthermal electrons, which produces a double-powerlaw with steadily increasing break energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源