论文标题

在大规模模拟期间的Operando主动学习原子间相互作用

In operando active learning of interatomic interaction during large-scale simulations

论文作者

Hodapp, Max, Shapeev, Alexander

论文摘要

最先进的机器学习跨性原子潜能的众所周知的缺点是它们推断超过训练领域的能力很差。对于具有数十至数百个原子的小规模问题,可以通过使用活跃的学习来解决这一问题,该学习能够选择原子构型,潜在的尝试外推并将其添加到AB Initio计算的训练集中。从这个意义上讲,积极的学习算法可以看作是AB始于模型的即时插值。对于大规模的问题,可能涉及成千上万个原子,这是不可行的,因为即使是如此大量的原子,也无法负担单个密度功能理论计算。 这项工作标志着一个新的里程碑,旨在从头开始自动审理大规模的原子模拟。我们开发了一种主动学习算法,该算法识别潜在外推的模拟区域的局部子区域。然后,该算法从这些局部非周期子区域中构造了周期性构型,足够小,可以使用平面波密度的功能理论代码来计算,以获得准确的初始能量。我们基于BCC钨中螺钉位错运动问题的算法基准,并表明我们的算法从头算的准确性达到了至关重要的精度,直到DFT代码中数值噪声的典型幅度。我们表明,我们的算法再现了诸如核心结构,PEIERLS屏障和PEIERLS应力之类的材料特性。这将计算材料科学的新功能释放出朝着应用程序的应用,如果仅通过AB INLIO算方法接近,这些功能目前已经超出了范围。

A well-known drawback of state-of-the-art machine-learning interatomic potentials is their poor ability to extrapolate beyond the training domain. For small-scale problems with tens to hundreds of atoms this can be solved by using active learning which is able to select atomic configurations on which a potential attempts extrapolation and add them to the ab initio-computed training set. In this sense an active learning algorithm can be viewed as an on-the-fly interpolation of an ab initio model. For large-scale problems, possibly involving tens of thousands of atoms, this is not feasible because one cannot afford even a single density functional theory computation with such a large number of atoms. This work marks a new milestone toward fully automatic ab initio-accurate large-scale atomistic simulations. We develop an active learning algorithm that identifies local subregions of the simulation region where the potential extrapolates. Then the algorithm constructs periodic configurations out of these local, non-periodic subregions, sufficiently small to be computable with plane-wave density functional theory codes, in order to obtain accurate ab initio energies. We benchmark our algorithm on the problem of the screw dislocation motion in bcc tungsten and show that our algorithm reaches ab initio accuracy, down to typical magnitudes of numerical noise in DFT codes. We show that our algorithm reproduces material properties such as core structure, Peierls barrier, and Peierls stress. This unleashes new capabilities for computational materials science toward applications which have currently been out of scope if approached solely by ab initio methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源