论文标题

学习线与序数约束

Learning Lines with Ordinal Constraints

论文作者

Fan, Bohan, Centurion, Diego Ihara, Mohammadi, Neshat, Sgherzi, Francesco, Sidiropoulos, Anastasios, Valizadeh, Mina

论文摘要

我们研究了在序数三限制下从一组点找到映射$ f $的问题。点三重的序数约束$(u,v,w)$断言$ | f(u)-f(v)| <| f(u)-f(w)| $。我们为该问题的致密情况提供了一种近似算法。给定一个实例,该实例承认满足$(1- \ varepsilon)$的解决方案 - 所有约束的分数,我们的算法计算一个满足$(1-o(\ varepsilon^{1/8}))$的解决方案 - (1/\ varepsilon)^{o(1/\ varepsilon^{1/8})} n $。

We study the problem of finding a mapping $f$ from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points $(u,v,w)$ asserts that $|f(u)-f(v)|<|f(u)-f(w)|$. We present an approximation algorithm for the dense case of this problem. Given an instance that admits a solution that satisfies $(1-\varepsilon)$-fraction of all constraints, our algorithm computes a solution that satisfies $(1-O(\varepsilon^{1/8}))$-fraction of all constraints, in time $O(n^7) + (1/\varepsilon)^{O(1/\varepsilon^{1/8})} n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源