论文标题

Graph2plan:从布局图中学习平面图生成

Graph2Plan: Learning Floorplan Generation from Layout Graphs

论文作者

Hu, Ruizhen, Huang, Zeyu, Tang, Yuhan, van Kaick, Oliver, Zhang, Hao, Huang, Hui

论文摘要

我们介绍了一个自动平面图生成的学习框架,该框架使用深神网络和用户在环设计中结合了生成建模,以使人类用户能够提供稀疏的设计约束。这样的约束由布局图表示。我们学习框架的核心组成部分是一个深神经网络,Graph2plan,它将布局图以及建筑物边界转换为一个满足布局和边界约束的平面图。给定输入构建边界,我们允许用户指定房间计数和其他布局约束,这些约束用于从数据库中检索一组带有关联的布局图的平面图。对于每个检索的布局图,以及输入边界,Graph2plan首先生成相应的栅格平面图图像,然后生成一组代表房间的盒子。 Graph2plan在RPLAN上进行了培训,RPLAN是一个由80K注释的平面图组成的大型数据集。该网络主要基于通过图神经网络(GNN)和输入构建边界以及通过常规图像卷积的闪光图形处理,以及栅格平面图。

We introduce a learning framework for automated floorplan generation which combines generative modeling using deep neural networks and user-in-the-loop designs to enable human users to provide sparse design constraints. Such constraints are represented by a layout graph. The core component of our learning framework is a deep neural network, Graph2Plan, which converts a layout graph, along with a building boundary, into a floorplan that fulfills both the layout and boundary constraints. Given an input building boundary, we allow a user to specify room counts and other layout constraints, which are used to retrieve a set of floorplans, with their associated layout graphs, from a database. For each retrieved layout graph, along with the input boundary, Graph2Plan first generates a corresponding raster floorplan image, and then a refined set of boxes representing the rooms. Graph2Plan is trained on RPLAN, a large-scale dataset consisting of 80K annotated floorplans. The network is mainly based on convolutional processing over both the layout graph, via a graph neural network (GNN), and the input building boundary, as well as the raster floorplan images, via conventional image convolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源