论文标题

湍流通道流中的能量转移及其对解析建模的影响

Energy transfer in turbulent channel flows and implications for resolvent modelling

论文作者

Symon, Sean, Illingworth, Simon J., Marusic, Ivan

论文摘要

我们分析了两种类型的平面Poiseuille流的能量之间的尺度转移:P4U确切的Park和Graham(2015)和最小通道中的湍流。对于这两个流量,主要产能模式都是流向恒定的条纹,其跨度间距约为100个壁单元。由于这些量表的粘性耗散不足以平衡产量,因此非线性术语将多余的能量重新分配到其他量表。 Spanwise-Contant量表(即具有零跨度波数的Tollmien-Schlichting样模式),特别是从非线性项中说明了很大的净能量增益。我们将能量平衡与回散分析的预测进行了比较,我们表明它不能很好地模拟能量转移。然而,我们发现从流向恒定条纹传递的能量可以通过污水粘度曲线很好地预测。因此,涡流粘度是解决分析分析中非线性项的有效模型,并解释了对最有能力的流向恒定条纹的良好预测。它还通过抵消分解操作员的非正态性来改善分解模式的基础,其流向长度大于其跨度宽度。涡流粘度并不尊重非线性能量转移的保守性质,而非线性能量转移的性质必须在所有尺度上总和为零。因此,对于从非线性术语中获得能量的量表,它的效率较小。

We analyse the inter-scale transfer of energy for two types of plane Poiseuille flow: the P4U exact coherent state of Park and Graham (2015) and turbulent flow in a minimal channel. For both flows, the dominant energy-producing modes are streamwise-constant streaks with a spanwise spacing of approximately 100 wall units. Since the viscous dissipation for these scales is not sufficient to balance production, the nonlinear terms redistribute the excess energy to other scales. Spanwise-constant scales (that is, Tollmien-Schlichting-like modes with zero spanwise wavenumber), in particular, account for a significant amount of net energy gain from the nonlinear terms. We compare the energy balance to predictions from resolvent analysis and we show that it does not model energy transfer well. Nevertheless, we find that the energy transferred from the streamwise-constant streaks can be predicted reasonably well by a Cess eddy viscosity profile. As such, eddy viscosity is an effective model for the nonlinear terms in resolvent analysis and explains good predictions for the most energetic streamwise-constant streaks. It also improves resolvent modes as a basis for structures whose streamwise lengths are greater than their spanwise widths by counteracting non-normality of the resolvent operator. Eddy viscosity does not respect the conservative nature of the nonlinear energy transfer which must sum to zero over all scales. It is less effective, consequently, for scales which receive energy from the nonlinear terms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源