论文标题
多项式logit过程和偏好发现:内外黑匣子
Multinomial logit processes and preference discovery: inside and outside the black box
论文作者
论文摘要
我们提供了两个特征,一种在广泛使用的SoftMax表示\ [p_ {t} \ left(a,a \ right)= \ dfrac {e^e^{e^{\ frac {\ frac {u \ left(a \ weft(a a \ weft(a a a a \ right)} { }+α\ left(a \ firt)}}} {\ sum_ {b \ in} e} $ a $是从套装$ a $可行替代方案中选择的,如果$ t $可以决定,$λ$是衡量信息单位成本的时间依赖性噪声参数,$ u $是时间独立的效用函数,而$α$是确定反映先前信息和内存锚定的替代特定偏见。 我们的公理分析提供了SoftMax的行为基础(当$α$是恒定时,也称为多项式logit模型)。我们的神经计算推导提供了一种具有生物学启发的算法,可以解释SoftMax在选择行为中的出现。共同的两种方法在内部原因(神经生理机制)和外部效应(可检验的含义)方面提供了对软最大化的透彻理解。
We provide two characterizations, one axiomatic and the other neuro-computational, of the dependence of choice probabilities on deadlines, within the widely used softmax representation \[ p_{t}\left( a,A\right) =\dfrac{e^{\frac{u\left( a\right) }{λ\left( t\right) }+α\left( a\right) }}{\sum_{b\in A}e^{\frac{u\left( b\right) }{λ\left( t\right) }+α\left( b\right) }}% \] where $p_{t}\left( a,A\right) $ is the probability that alternative $a$ is selected from the set $A$ of feasible alternatives if $t$ is the time available to decide, $λ$ is a time dependent noise parameter measuring the unit cost of information, $u$ is a time independent utility function, and $α$ is an alternative-specific bias that determines the initial choice probabilities reflecting prior information and memory anchoring. Our axiomatic analysis provides a behavioral foundation of softmax (also known as Multinomial Logit Model when $α$ is constant). Our neuro-computational derivation provides a biologically inspired algorithm that may explain the emergence of softmax in choice behavior. Jointly, the two approaches provide a thorough understanding of soft-maximization in terms of internal causes (neurophysiological mechanisms) and external effects (testable implications).