论文标题
爱因斯坦 - 韦尔歧管的对称性
Symmetries of Einstein-Weyl Manifolds with Boundary
论文作者
论文摘要
从带有真实分析保形的cartan连接的真实分析表面$ \ Mathcal {M} $开始,A。Borówka构建了一个渐近夸张的爱因斯坦 - 韦尔·雷诺尔(Einstein-Weyl)的微型速度空间。在本文中,从共同cartan连接的对称性开始,我们证明了在$ \ Mathcal {M} $上的共形曲棍球连接的对称性可以扩展到所获得的Einstein-Weyl歧管的对称性。
Starting from a real analytic surface $\mathcal{M}$ with a real analytic conformal Cartan connection A. Borówka constructed a minitwistor space of an asymptotically hyperbolic Einstein-Weyl manifold with $\mathcal{M}$ being the boundary. In this article, starting from a symmetry of conformal Cartan connection, we prove that symmetries of conformal Cartan connection on $\mathcal{M}$ can be extended to symmetries of the obtained Einstein-Weyl manifold.