论文标题
对抗性学习为线性假设和神经网络保证
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
论文作者
论文摘要
对抗或测试时间鲁棒性测量分类器对测试输入的扰动的敏感性。尽管最近在设计防御这种扰动方面进行了一系列工作,但对抗性鲁棒性理论尚未得到充分理解。为了在这方面取得进展,我们将重点放在通过Rademacher复杂性的角度来理解对抗环境中的概括的问题。我们给出了线性假设的对抗经验Rademacher复杂性的上限和下限,并以$ L_R $ -NORM测量的对抗性扰动,用于任意$ r \ geq 1 $。这概括了[Yin等人19]研究$ r = \ infty $的情况,并且与线性假设类别的[Khim和Loh'19]的最新工作相比,对对输入维度的依赖性进行了更精细的分析。 然后,我们扩展我们的分析,以为单个relu单元提供下限和上限。最后,我们为带有一个隐藏层的前馈神经网络提供了对抗性的Rademacher复杂性界限。与以前的作品不同,我们直接提供给定网络的对抗性rademacher复杂性的界限,而不是对替代物的结合。我们的分析的副产品还导致了线性假设的Rademacher复杂性的更严格的界限,为此我们提供了详细的分析,并与现有界限进行了比较。
Adversarial or test time robustness measures the susceptibility of a classifier to perturbations to the test input. While there has been a flurry of recent work on designing defenses against such perturbations, the theory of adversarial robustness is not well understood. In order to make progress on this, we focus on the problem of understanding generalization in adversarial settings, via the lens of Rademacher complexity. We give upper and lower bounds for the adversarial empirical Rademacher complexity of linear hypotheses with adversarial perturbations measured in $l_r$-norm for an arbitrary $r \geq 1$. This generalizes the recent result of [Yin et al.'19] that studies the case of $r = \infty$, and provides a finer analysis of the dependence on the input dimensionality as compared to the recent work of [Khim and Loh'19] on linear hypothesis classes. We then extend our analysis to provide Rademacher complexity lower and upper bounds for a single ReLU unit. Finally, we give adversarial Rademacher complexity bounds for feed-forward neural networks with one hidden layer. Unlike previous works we directly provide bounds on the adversarial Rademacher complexity of the given network, as opposed to a bound on a surrogate. A by-product of our analysis also leads to tighter bounds for the Rademacher complexity of linear hypotheses, for which we give a detailed analysis and present a comparison with existing bounds.