论文标题
GBAR压力下的碳离子化:天体物理高密度等离子体的一开始
Carbon ionization at Gbar pressures: an ab initio perspective on astrophysical high-density plasmas
论文作者
论文摘要
对极端热力学状态中部分离子物质的现实描述对于建模高密度天体物理对象的内部和演变至关重要。当前对其基本特性(电离度)的预测广泛依赖于最近受到一系列实验挑战的分析近似。在这里,我们提出了一种新型的从头算法,使用Thomas-Reiche-Kuhn总和直接从动态电导率中计算电离程度。该密度功能理论框架确实捕获了凝聚的物质性质和量子效应,这是强相关等离子体的典型效果。我们证明了这种新的碳和碳氢化合物能力,最著名的是旨在重现出色条件的惯性限制融合实验中的烧蚀材料。我们发现的碳电离度明显高于常用模型所预测的,但验证了平均原子模型purgatorio的定性行为。此外,我们发现在完全离子化的氢气环境中,碳离子化状态保持不变。我们的结果不仅可以作为传统模型的基准,而且更重要的是,以电导率的形式提供实验可访问的数量。
A realistic description of partially-ionized matter in extreme thermodynamic states is critical to model the interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential property, the ionization degree, rely widely on analytical approximations that have been challenged recently by a series of experiments. Here, we propose a novel ab initio approach to calculate the ionization degree directly from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This Density Functional Theory framework captures genuinely the condensed matter nature and quantum effects typical for strongly-correlated plasmas. We demonstrate this new capability for carbon and hydrocarbon, which most notably serve as ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the qualitative behavior of the average atom model Purgatorio. Additionally, we find the carbon ionization state to remain unchanged in the environment of fully-ionized hydrogen. Our results will not only serve as benchmark for traditional models, but more importantly provide an experimentally accessible quantity in the form of the electrical conductivity.