论文标题
消费和排斥如何设定行星间隙深度和最终的天然气巨头质量
How Consumption and Repulsion Set Planetary Gap Depths and the Final Masses of Gas Giants
论文作者
论文摘要
行星在光盘中张开缝隙。缝隙开口通常是通过考虑行星Lindblad扭矩来模拟的,该扭矩将圆盘气体从行星的轨道驱逐出去。但是差距也很明显,因为地球消耗了当地材料。我们提出了一个简单,易于使用的分析框架,用于计算差距如何消耗以及圆盘结构的整体方式如何通过lindblad排斥和行星消耗的合并作用而变化。散发出的最终质量是在串联中得出的最终质量。分析对一维数值实验进行了测试,并使用已发布的多维模拟进行了校准。在粘性α碟片中,地球在清除差距的同时,最初会吸收几乎所有试图扩散过去的气体,即使不是棕色矮人的地位,也可以迅速实现超级jupiter。相比之下,在无粘性碟片中,它仍然可以通过磁化风向磁性降落到其中心恒星上---行星张开,以排斥力为主导的缝隙。然后,只有一小部分的圆盘吸积流将其转移到行星上,该行星生长到木星质量的一小部分。这种低质量物体的家庭可能会清除过渡圆盘腔,以打开无粘性,以排斥为主导的重叠间隙,这使大多数外盘气体都可以不受阻碍地流向宿主星星。
Planets open gaps in discs. Gap opening is typically modeled by considering the planetary Lindblad torque which repels disc gas away from the planet's orbit. But gaps also clear because the planet consumes local material. We present a simple, easy-to-use, analytic framework for calculating how gaps deplete and how the disc's structure as a whole changes by the combined action of Lindblad repulsion and planetary consumption. The final mass to which a gap-embedded gas giant grows is derived in tandem. The analytics are tested against 1D numerical experiments and calibrated using published multi-dimensional simulations. In viscous alpha discs, the planet, while clearing a gap, initially accretes practically all of the gas that tries to diffuse past, rapidly achieving super-Jupiter if not brown dwarf status. By contrast, in inviscid discs---that may still accrete onto their central stars by, say, magnetized winds---planets open deep, repulsion-dominated gaps. Then only a small fraction of the disc accretion flow is diverted onto the planet, which grows to a fraction of a Jupiter mass. Transitional disc cavities might be cleared by families of such low-mass objects opening inviscid, repulsion-dominated, overlapping gaps which allow most of the outer disc gas to flow unimpeded onto host stars.