论文标题

高能物理数据的量子启发的机器学习

Quantum-inspired Machine Learning on high-energy physics data

论文作者

Felser, Timo, Trenti, Marco, Sestini, Lorenzo, Gianelle, Alessio, Zuliani, Davide, Lucchesi, Donatella, Montangero, Simone

论文摘要

Tensor Networks是一种最初设计用于模拟量子多体系统的数值工具,最近已应用于解决机器学习问题。利用树木张量网络,我们将量子启发的机器学习技术应用于高能物理学中非常重要且具有挑战性的大数据问题:大型强子对核心在CERN产生的数据的分析和分类。特别是,我们介绍了如何有效地对所谓的B-JET进行分类,即源自LHCB实验中Proton-Proton碰撞的B Quarks的喷射,以及如何解释分类结果。我们利用张量网络方法来选择重要功能并根据学习过程中获得的信息调整网络几何形状。最后,我们展示了如何调整树张量网络以在及时获得最佳的精度或快速响应,而无需重复学习过程。这些结果为实施高频实时应用程序铺平了道路,这是当前和将来的LHCB事件分类所需的关键要素,能够以数十个MHz量表触发事件。

Tensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton-proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源