论文标题

在非统一的局部驯服奇点上分层的摩尔斯临界点和铜管数

Stratified Morse critical points and Brasselet number on non-degenerate locally tame singularities

论文作者

Dalbelo, Thaís M., Santana, Hellen

论文摘要

戈尔斯基(Goresky)和麦克弗森(MacPherson)提出的莫尔斯理论的概括是一个地标,它完全分配了拓扑和地理\ -Me \ -tri \ -tri \ -cal的奇异空间研究。 Let \{$X_t\}_t$ be a suitable family of germs at $0$ of complete intersection varieties in $\mathbb{C}^n$ and $\{f_t\}_t, \{g_t\}_t$ families of non-constant polynomial functions on $X_t$.如果细菌$ x_t $,$ x_t \ cap f_t^{ - 1}(0)$和$ x_t \ cap f_t^{ - 1} { - 1}(0)\ cap g_t^{ - 1}(-1}(0)$是非分类的,local tame tame tame tame,tame tame tame $ t,$ t,$ t,$ t,$ t,$ t,$ t,$ t,$ t,我们的$ b} _ {f_t,x_t}(0)$和$ {\ rm b} _ {f_t,x_t \ cap g_t^{ - 1}(0)}(0)$,与Morse关键点的数量相关$ g_t $具有任意维度的关键基因座。该结果连接拓扑和几何特性,使我们能够确定一些有趣的公式,主要是根据牛顿多面体的组合信息。

The generalization of the Morse theory presented by Goresky and MacPherson is a landmark that divided completely the topological and geo\-me\-tri\-cal study of singular spaces. Let \{$X_t\}_t$ be a suitable family of germs at $0$ of complete intersection varieties in $\mathbb{C}^n$ and $\{f_t\}_t, \{g_t\}_t$ families of non-constant polynomial functions on $X_t$. If the germs $X_t$, $X_t \cap f_t^{-1}(0)$ and $X_t\cap f_t^{-1}(0) \cap g_t^{-1}(0)$ are non-degenerate, locally tame, complete intersection varieties, for each $t,$ we prove that the difference of the Brasselet numbers, ${\rm B}_{f_t,X_t}(0)$ and ${\rm B}_{f_t,X_t\cap g_t^{-1}(0)}(0)$, is related with the number of Morse critical points {on the regular part of the Milnor fiber} of $f_t$ appearing in a morsefication of $g_t$, even in the case where $g_t$ has a critical locus with arbitrary dimension. This result connects topological and geometric properties and allows us to determine some interesting formulae, mainly in terms of the combinatorial information from Newton polyhedra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源