论文标题
基于符号集成商的深哈密顿网络
Deep Hamiltonian networks based on symplectic integrators
论文作者
论文摘要
HNET是一类神经网络,理由是学习哈密顿系统的物理先验。本文通过错误分析解释了不同集成剂作为HNET的超参数的影响。如果我们将网络目标定义为在任意培训数据上具有零经验损失的地图,则非隔离积分器无法保证HNET的网络目标存在。我们介绍了HNET的逆修改方程,并证明基于符号积分器的HNET具有网络目标以及网络目标和原始汉密尔顿人之间的差异取决于集成商的准确性顺序。我们的数值实验表明,由象征性HNET获得的汉密尔顿系统的相位流并不能完全保留原始的哈密顿量,而是保留计算出的网络目标。培训数据和测试数据的网络目标丢失远小于原始哈密顿量的损失。在解决预测问题时,符合性HNET具有更强大的概括能力和更高的准确性。因此,符号积分对HNET至关重要。
HNets is a class of neural networks on grounds of physical prior for learning Hamiltonian systems. This paper explains the influences of different integrators as hyper-parameters on the HNets through error analysis. If we define the network target as the map with zero empirical loss on arbitrary training data, then the non-symplectic integrators cannot guarantee the existence of the network targets of HNets. We introduce the inverse modified equations for HNets and prove that the HNets based on symplectic integrators possess network targets and the differences between the network targets and the original Hamiltonians depend on the accuracy orders of the integrators. Our numerical experiments show that the phase flows of the Hamiltonian systems obtained by symplectic HNets do not exactly preserve the original Hamiltonians, but preserve the network targets calculated; the loss of the network target for the training data and the test data is much less than the loss of the original Hamiltonian; the symplectic HNets have more powerful generalization ability and higher accuracy than the non-symplectic HNets in addressing predicting issues. Thus, the symplectic integrators are of critical importance for HNets.